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Abstract

We analyze the sheath helix model of the pulseline
accelerator [1]. We find the dispersion relation for a
shielded helix with a dielectric material between the
shield and the helix and compare it against the results
from 3-D electromagnetic simulations. Expressions for
the fields near the beam axis are obtained. A scheme to
taper the properties of the helix to maintain synchronism
with the accelerated ions is described. An approximate
circuit model of the system that includes beam loading is
derived.

INTRODUCTION

It has been recently recognized by Briggs that the well-
known slow wave structure consisting of a helix wound
over an evacuated beam tube, an outer diclectric layer and
an outer conductor can be used to accelerate ions [1].
When a pulse is injected into this system by impressing a
voltage between the helix and outer conductor a
longitudinal electric field will be generated along the
helix that persists on the axis if certain conditions are
satisfied. The magnitude of the electric field along the
helix is roughly given by
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where v, is the phase velocity of the propagating voltage
wave of amplitude V. The helix has non-local coupling
due to mutual inductance and capacitance between the
windings that gives rise to dispersion. As the ions gain
energy from the propagating wave their speed increases
and they can lose synchronism with the accelerating field
unless the properties of the helical structure are tapered in
the appropriate way. There are several operating modes
of the helix with respect to whether or not the wave is in
synchronism with the particles. In this paper we consider
only the mode in which the particles move synchronously
with the wave.

FIELD MODEL

Consider the geometry shown in Figure 1. The helix
has radius a and the outer conductor has radius b.
Between the helix and the outer conductor is a dielectric.
The interior of the helix is in vacuum.

* This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
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We will use the sheath helix model to find the fields in
this structure [2]. In the dielectric layer of relative
permittivity € we have
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while in the interior vacuum region we have
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Figure 1: Schematic of helix, diclectric sleeve and outer
conductor.

In the sheath helix model the actual fine structure of the
helix is ignored which is a reasonable approximation for
wavelengths that are long compared to the pitch or
spacing of the helical windings. If we let all quantities
vary as expli(kz-wt)] the field equations become
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where equation (4) applies to the region a < r < b and
equation (5) applies to the region r < a. The tildes
indicate Fourier amplitudes. If we make the definitions
p=kew’c’ and p=k>w’c> then the appropriate
solutions of equations (4) and (5) are
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By using the Maxwell curl equations all the other field
components may be determined from E, and B,. By
imposing the condition that E, and B, vanish at r = b we
find that fora<r<b
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Next, we impose the conditions the electric field
tangential to the helix vanishes

B =E U(p )+ ——=
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and that the tangential magnetic field B siny+Bcosy is
continuous across the helix [3].

Here the pitch angle Wy = cot™ (2ma/l.) where L is the
pitch of the helix, the distance between adjacent
windings. Imposing the continuity of E, at r = a allows
the determination of all of the unknown 6 coefficients in
terms of one remaining coefficient. Taking appropriate
ratios of field components allows us to obtain the
dispersion relation
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which agrees with the result obtained by Anicin [4]. A
plot of wa/c vs. ka is shown in Figure 2.
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Figure 2: Plot of wa/c vs. ka for the case =1, y = .01
and b/a=1.5.

Results of a 3-D finite difference time domain
electromagnetic code XFDTD show good agreement with
equation (11) [5].

Taking the limit of equation (11) as ka approaches zero
yields the phase velocity @k as
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From equation (7) and the definitions of w and v, we
find that
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From equation (13) we can see that the on-axis gradient is
preserved provided that
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By relating the current in the helix to the fields the all
the field components can be determined. We need to
calculate the jump in Bz and B¢ across the helix
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From the sheath helix model we have the boundary
condition [2]
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From the ficld solution we have
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which can be related to the voltage across the line as
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In the low frequency limit A can be related to the

current as
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Using equations (20) and (21) to relate the voltage to
the current yields the characteristic impedance (in the low
frequency limit) as
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TAPERED LINE FOR SYNCHRONOUS
OPERATION
As the ions accelerate in the field of the traveling wave
they will accelerate and lose synchronism with the pulse.

In order to maintain synchronism the wave speed must
remain equal to the ion speed
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In order that the gradient remain constant we must have
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As we vary the parameters of the line the impedance will
change. The voltage on the line will scale as the square
root of the impedance. Thus we must have

(24)

1/4

Ly
=constant. 25)
%
Combining equations (23) and (25) gives the tapering
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BEAM LOADING

An approximate circuit model that incorporates the
effects of beam loading may be written by assuming that
the dispersion in the helix is small so that the propagation
of electromagnetic waves is governed by the transmission
line equations. We add a term proportional to the line
density of the bunch
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where L and C are respectively, the inductance and
capacitance per unit length and A, is the line charge
density of the bunch.

SUMMARY

We have obtained the dispersion relation for a helix
wound inside of a diclectric shell that is encased by a
conducting cylinder. From the field solution in the sheath
helix model we have obtained expressions for the low
frequency phase velocity and characteristic impedance as
well as the fields. The tapering prescription necessary to
maintain synchronous acceleration with constant gradient
has been derived and a simple model of beam loading has
been presented.
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